89 research outputs found

    A Novel Efficient Quantum Random Access Memory

    Get PDF
    Owing to the significant progress in manufacturing desktop quantum computers, the quest to achieve efficient quantum random access memory (QRAM) became inevitable. In this paper, we propose a novel efficient random access memory for quantum computers. The proposed QRAM has a fixed structure and can be used efficiently to store both known and unknown classical/quantum data. The storage capacity of the proposed QRAM is more efficient than that of the classical RAMs and can be used to store both classical and quantum information. Furthermore, the proposed model can access an arbitrary location in O(1) compared with other state-of-the-art models

    Heat and mass transport analysis of chemically reacting cross diffusion convection in a couple stress fluid-saturated rotating porous medium with internal heat generation

    Get PDF
    In the present study, non-linear stability analysis with chemical reaction is performed in pair stress fluid saturated with anisotropic porous medium with the consideration of an internal heat source. In the governing equation, the extended Darcy model has been employed in the momentum equation. The normal mode approach and truncated Fourier series methodology were adopted for linear, and non-linear stability investigations. The impact of numerous characteristics, such as the DuFour and Soret parameters, has been addressed and visually depicted

    A Proposed ANN-Based Acceleration Control Scheme for Soft Starting Induction Motor

    Get PDF
    In this article, a new soft starting control scheme based on an artificial neural network (ANN) is presented for a three-phase induction motor (IM) drive system. The main task of the control scheme is to keep the accelerating torque constant at a level based on the value of reference acceleration. This is accomplished by the proper choice of the firing angles of thyristors in the soft starter. Using the ANN approach, the complexity of the online determination of the thyristors firing angles is resolved. The IM torque-speed characteristic curves are firstly used to train the ANN model. Secondly, the IM- soft starter system is modeled using MATLAB/SIMULINK. To prove the effectiveness of the proposed ANN-based acceleration control scheme, different reference accelerations and loading conditions are applied and investigated. Finally, a laboratory prototype of 3 kW soft starter is implemented. The proposed control scheme is executed in a real-time environment using a digital signal processor (Model: TMS320F28335). The simulation and real-time results significantly confirm that the proposed controller can efficiently reduce the IM starting current and torque pulsations. This in turn ensures a smooth acceleration of the IM during the starting process. Moreover, the proposed control scheme has the superiority over several soft starting control schemes since it has a simple control circuit configuration, less required sensors, and low computational burden of the control algorithm. © 2021 Institute of Electrical and Electronics Engineers Inc.. All rights reserved

    Gravitationally decoupled charged anisotropic solutions in Rastall gravity

    Get PDF
    This paper develops the stellar interior geometry for charged anisotropic spherical matter distribution by developing an exact solution of the field equations of Rastall gravity using the notion of gravitational decoupling. The main purpose of this investigation is the extension of the well-known isotropic model within the context of charged isotropic Rastall gravity solutions. The second aim of this work is to apply gravitational decoupling via a minimal geometric deformation scheme in Rastall gravity. Finally, the third one is to derive an anisotropic version of the charged isotropic model previously obtained by applying gravitational decoupling technology. We construct the field equations which are divided into two sets by employing the geometric deformation in radial metric function. The first set corresponds to the seed (charged isotropic) source, while the other one relates the deformation function with an extra source. We choose a known isotropic solution for spherical matter configuration including electromagnetic effects and extend it to an anisotropic model by finding the solution of the field equations associated with a new source. We construct two anisotropic models by adopting some physical constraints on the additional source. To evaluate the unknown constants, we use the matching of interior and exterior spacetimes. We investigate the physical feasibility of the constructed charged anisotropic solutions by the graphical analysis of the metric functions, density, pressure, anisotropy parameter, energy conditions, stability criterion, mass function, compactness, and redshift parameters. For the considered choice of parameters, it is concluded that the developed solutions are physically acceptable as all the physical aspects are well-behaved

    Existence criteria for fractional differential equations using the topological degree method

    Get PDF
    In this work, we analyze the fractional order by using the Caputo-Hadamard fractional derivative under the Robin boundary condition. The topological degree method combined with the fixed point methodology produces the desired results. Finally to show how the key findings may be utilized, applications are presented

    A new discussion concerning to exact controllability for fractional mixed Volterra-Fredholm integrodifferential equations of order r∈(1,2) with impulses

    Get PDF
    In this article, we look into the important requirements for exact controllability of fractional impulsive differential systems of order 1<r<2. Definitions of mild solutions are given for fractional integrodifferential equations with impulses. In addition, applying fixed point methods, fractional derivatives, essential conditions, mixed Volterra-Fredholm integrodifferential type, for exact controllability of the solutions are produced. Lastly, a case study is supplied to show the illustration of the primary theorems

    Exact solutions of κ-dependent Schrödinger equation with quantum pseudo-harmonic oscillator and its applications for the thermodynamic properties in normal and superstatistics

    Get PDF
    The effects of the curvature parameters on the energy eigenvalues and thermodynamic properties of quantum pseudoharmonic oscillator are investigated within the framework of nonrelativistic quantum mechanics. By employing Nikiforov-Uvarov method, the energy spectra are obtained and used to study the ordinary statistics and q-deformed superstatistics as a function of temperature in the presence and absence of the curvature parameters. It is shown that the q-deformed supertatistics properties of the quantum pseudoharmonic oscillator reduce to the ordinary statistical properties in the absence of the deformation parameter. Finally, our results are illustrated graphically to show the behaviour of the energy spectra and thermodynamic properties for the three curvature parameters:κ=−1,κ=1andκ=0

    Thermal growth in solar water pump using Prandtl-Eyring hybrid nanofluid: a solar energy application

    Get PDF
    Nowadays, with the advantages of nanotechnology and solar radiation, the research of Solar Water Pump (SWP) production has become a trend. In this article, Prandtl-Eyring hybrid nanofluid (P-EHNF) is chosen as a working fluid in the SWP model for the production of SWP in a parabolic trough surface collector (PTSC) is investigated for the case of numerous viscous dissipation, heat radiations, heat source, and the entropy generation analysis. By using a well-established numerical scheme the group of equations in terms of energy and momentum have been handled that is called the Keller-box method. The velocity, temperature, and shear stress are briefly explained and displayed in tables and figures. Nusselt number and surface drag coefficient are also being taken into reflection for illustrating the numerical results. The first finding is the improvement in SWP production is generated by amplification in thermal radiation and thermal conductivity variables. A single nanofluid and hybrid nanofluid is very crucial to provide us the efficient heat energy sources. Further, the thermal efficiency of MoS2-Cu/EO than Cu-EO is between 3.3 and 4.4% The second finding is the addition of entropy is due to the increasing level of radiative flow, nanoparticles size, and Prandtl-Eyring variable
    corecore